
JavaScript

React UI Implementation Guide
This document outlines the starting point and key components of the React app
codebase. It serves as a guide for developers to understand the application's
structure and architecture.

Starting Point
The application's entry point is typically the App.js file located in the src folder.
This file renders the root component (App) into the DOM. Here is a representation
of how this looks.

import React from 'react';
import ReactDOM from 'react-dom';
import App from './App';

ReactDOM.render(
 <Suspense fallback={<FullPageLoader resourceName="Migration" />}>
 <Provider store={store}>
 <PersistGate
 loading={<FullPageLoader resourceName="Migration" />}
 persistor={persistor}
 >
 <AppLayout>
 <AppRouter />
 </AppLayout>
 </PersistGate>
 </Provider>
 </Suspense>
 </ErrorBoundary>,
 document.getElementById('root')
);

The App component serves as the main container for the entire application.
The texts showing on the UI side are getting fetched from the folder located
src/cmsData.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Key Components
The React app uses several components to structure its UI and functionality.
Below is a table that lists the components and their descriptions.

Component Name Description

App The main container for the entire
application.

Login Handles user authentication. Displays a
login form where users input credentials
and submit for validation.

Region page Displays the card of regions available for
login

Project Displays the project dashboard page after
login

Sidebar Displays the settings page

Migration Displays the migration stepper for each
project

These are some of the primary components. The actual components might vary
based on the application's requirements and complexity.

Folder Structure
The folder structure of the React app looks like the following:

● src/
○ components/

■ Header/
■ Footer/

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

■ MainContent/
■ Sidebar/
■ Form/
■ Button/
■ List/
■ Card/

○ assets/
■ images/
■ styles/

○ pages/
■ Home/
■ Login/
■ Sidebar/
■ RegionPage/
■ Projects/
■ Migration/
■ Errors/

○ utilities/
○ App.tsx
○ index.tsx

This structure organises components, assets, and other utility files for better
maintainability.

Dependencies
The app uses the following key dependencies:

● React
● React DOM

Additional dependencies include:

● React Router

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

TypeScript

● Redux
● Venus components
● bootstrap

These libraries are essential for handling routing, state management, and API calls
and components .

Detailed Component Overview:

Entry point:
● Location: ui/src/index.tsx
● Type: Functional Component
● Purpose: This file serves as the main entry point of the React application. It

initialises the app, attaches it to the DOM, and sets up routing and global
state management.

Renders the main App component wrapped in:

● BrowserRouter for client-side routing,

● Provider to supply the Redux store to the entire app.

App.tsx – Root Component Wrapper :

This file serves as the main wrapper around your entire application. It defines the
global context, manages application-wide logic like error boundaries, Redux
persistence, lazy loading, and network status checks.

● Custom hook that monitors online/offline status of the app

useEffect(() => {

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

 const selectModal = document.querySelector('.ReactModalPortal');
 if (selectModal instanceof HTMLElement && !isOnline) {
 selectModal.style.display = 'none';
 }
}, [isOnline]);

 Online: Loads the full application wrapped in error boundaries and global
providers.
 Offline: Displays a friendly network error message.

AppRouter.tsx – Application Routing Configuration

Handles the entire routing logic of the application using React Router. It defines
public and protected routes, implements lazy loading for performance
optimization, and renders appropriate pages based on the URL.

 Key Features:

● Improves performance by loading page components only when needed.
● Supports dynamic parameters such as projectId and stepId for nested

routing.
● A catch-all route (path="*") to show a custom error page when the route

doesn't exist.
● Prevents access to internal pages unless authenticated

 Routes used in this application are:

 Route Path Component Access Type

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

/ Home Public

/region-login RegionalLogin Public

/login Login Public

/projects Projects Protected

/projects/:projectId/setting
s

Settings Protected

/projects/:projectId/migrati
on/steps/:stepId

Migration Protected

* ErrorPage Fallback

Home.tsx – Home Page Component

This component serves as the landing page for the application. It pulls content
from offline CMS data, blocks browser navigation (back/forward), and displays a
button to login with contentstack.

Key Responsibilities

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

1. Fetching Offline CMS Content

 On initial render, the component fetches homepage content from a CMS
data file using the getCMSDataFromFile() function. This content includes
fields like heading, description, and a CTA object with title and URL.

2. Handling Navigation Control
 The component integrates two custom hooks:

○ useBlockNavigation(true) prevents the user from leaving the
page unintentionally.

○ usePreventBackNavigation() disables back button behaviour to
prevent navigating to a previous route.

3. Rendering CMS Content
 Once the data is fetched:

○ The heading is displayed in a header element.

○ The description, which might contain HTML formatting, is parsed
using html-react-parser and rendered accordingly.

○ If a CTA is provided, itʼs rendered as a styled button inside a React
Router <Link> that navigates to the provided URL.

4. Styling and Layout
 The layout is vertically and horizontally centred using utility classes,
ensuring it looks visually appealing regardless of screen size.

Login Component:

Location : src/pages/Login

This Login component is a React functional component that handles user login
with Two-Factor Authentication TFA, built using react-final-form, Redux, and
react-router-dom.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

● Login Data and CMS Integration
○ It uses a function getCMSDataFromFile to load login page content

dynamically (like heading, subtitle, labels, etc.) from CMS data
(CS_ENTRIES.LOGIN).

○ The result is stored in state and used to populate UI fields like labels
or button text.

● Routing and Redux
○ It uses useNavigate and useLocation from React Router to

manage redirects and to read a region query param.
○ Redux's useSelector gets the user from the auth state, and

useDispatch is used to update auth info on successful login
(setUser, setAuthToken, etc.).

● Login Form Logic
■ onSubmit handles both first login and TFA scenarios:

● Updates local login state (loginStates) with user info.
● Calls userSession API.
● Handles three cases:

○ TFA required (status === 294): shows TFA
input.

○ Login failed (status === 104/400/422): shows
error notification.

○ Login success (status === 200): stores token,
updates Redux, redirects to /projects.

● Two-Factor Auth Support
○ When TFA is required, a different form shows up asking for a token

(tfa_token).
○ Users can click a link to send SMS for the code. This calls

requestSMSToken, and shows a notification if SMS is sent.

● Form Validations

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

○ Simple email, password, and TFA token validations are provided

(emailValidation, passwordValidation, TFAValidation) using
plain functions.

○ Back Button Handling
○ If the user is in the TFA step, the browser back button is blocked

using
■ window.history.pushState to fake a history entry.
■ popstate event is intercepted to redirect back to a safe route

(either /region-login or /login?region=...), ensuring
users donʼt leave TFA mid-process.

 Final Rendering

● UI comes from <AccountPage> and renders either:
○ TFA form (with TFA token input and SMS link), or
○ Email/password form (not included in the snippet but likely appears

when loginStates.tfa === false)

Project : project dashboard

Location: src/pages/Projects
Interfaces used are stored in src/pages/Projects/projects.interface file

The Projects component is a landing page that displays a list of projects
available for the currently selected organisation. It supports search, project
creation via modal, and handles empty states. The data is fetched from both an
internal API (getAllProjects) and a local CMS file (getCMSDataFromFile).

Redux and User Context

● Uses useSelector to get the current selected selectedOrganisation
from the Redux authentication state.

● This value is used to fetch organisation-specific projects.

Project List & API Integration

If you have any questions, please reach out to tso-migration@contentstack.com

http://projects.interface.ts
mailto:tso-migration@contentstack.com

● Fetches projects via getAllProjects, passing the selected organisationʼs

ID.
● Maintains two states: projects (filtered/displayed) and allProjects

(raw/full list).
● Also maintains loadStatus (loading spinner) and searchText.

Search Functionality

● Reads initial search query from URL on load using useLocation.
● Filters all allProjects by project name as the user types into the search

box.
● Displays different empty states for no results vs. no projects.

Modal Support

● A modal for creating a new project is launched using the cbModal function.
● Modal content is passed using the Modal component, which receives

dynamic content from CMS.
● After modal close, it refetches projects to reflect changes.

Back Button Handling

● Uses a custom usePreventBackNavigation hook.
● Prevents users from navigating away via the browserʼs back button while

the modal is open or when needed.

UI & Rendering

● Header is rendered using the ProjectsHeader component with props like
headingText, searchText, setSearchText, cta, etc.

● Projects are rendered using the CardList component.
● Skeleton loaders appear while data is loading.
● Empty states rendered using EmptyState with appropriate icons and

messaging (for no projects or no search results).

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Migration component

Location: src/pages/Migration

The Migration component orchestrates a multi-step migration flow for content
migration projects. It manages state, interacts with Redux, fetches data from APIs, and
coordinates the UI steps for migrating content from a legacy CMS to a new stack.

Features:

● Step Management: Handles navigation and state for each step in the
migration process.

● Data Fetching: Retrieves project, CMS, stack, and file configuration data from
APIs.

● Redux Integration: Reads and updates migration-related data in the Redux
store.

● UI Coordination: Renders step-specific components and manages their
completion state.

● User Feedback: Provides notifications and modals for user actions and errors.

Key State & References

● projectData: Holds the current projectʼs migration data.
● isLoading: Indicates if data is being loaded or an action is in progress.
● currentStepIndex: Tracks the current step in the migration flow.
● isCompleted: Flags if the current step is completed.
● isProjectMapper: Controls when project mapping is in progress.
● disableMigration: Disables migration execution after starting.
● isModalOpen: Controls visibility of the save changes modal.
● stepperRef, legacyCMSRef, saveRef: Refs to child components for

imperative actions

Main Steps in Migration Flow

1. Select Legacy CMS
○ Choose CMS, enter affix, and upload file.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

○ Validates file format and affix.

2. Configure Destination Stack
○ Select the destination stack and map locales.
○ Validates stack selection and locale mapping.

3. Map Content Fields
○ Map legacy content types to new stack types.
○ Handles unsaved changes with a modal.

4. Run Test Migration
○ Initiates a test migration to validate mapping.

5. Execute Migration
○ Starts the final migration process.

Core Functions

● fetchData: Loads initial CMS flow data and updates Redux with flow
steps.

● fetchProjectData: Loads project-specific data, including stack info, file
config, and updates Redux state accordingly.

● fetchExistingContentTypes / fetchExistingGlobalFields: Fetches existing
content types and global fields for the destination stack.

● getFileExtension/fetchFileFormat/getFileInfo: Utility functions to extract
file info and format from config responses.

● createStepper: Returns an array of step definitions with associated
components for the stepper UI.

● handleOnClick[Step]: Functions to handle "Continue" or "Save and
Continue" actions for each step, including API updates and navigation.

Notifications & Modals

● Uses Notification from Venus Components to show user feedback on
errors or required actions.

● Uses cbModal to show a save changes modal when unsaved changes are
detected in content mapping.

Component structure

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

TypeScript

TypeScript

<MigrationFlowHeader />
<HorizontalStepper />
 ├─ <LegacyCms />
 ├─ <DestinationStackComponent />
 ├─ <ContentMapper />
 ├─ <TestMigration />
 └─ <MigrationExecution />

Components Directory Overview:
The components/ directory contains reusable, presentational UI components
used throughout the application. These are usually stateless or receive data via
props and are designed for composability and reuse.Below is a conceptual
breakdown of common component types and their purpose.

AccountPage

The AccountPage component serves as a layout wrapper for user
account-related pages (e.g., login, sign-up, reset password).

Component Location

● File: components/AccountPage/index.tsx
● Styles: components/AccountPage/index.scss
● Interface: components/AccountPage/accountPage.interface.ts

Props:

interface AccountObj {

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

TypeScript

 children: React.ReactNode;
 data: LoginType;
}

AdvancedProperties

Location : src/components/AdvancePropertise
Interface: src/components/AdvancePropertise/advanceProperties.interface.ts
purpose : Used for customizing a fieldʼs behavior in a form-driven UI
Props :

interface SchemaProps {
 fieldtype: string;
 value: UpdatedSettings;
 rowId: string;
 updateFieldSettings: (rowId: string, value: Advanced,
checkBoxChanged: boolean) => void;
 isLocalised: boolean;
 closeModal: () => void;
 data: FieldMapType;
 projectId?: string;
}

State Variables

● options: Options for dropdown or radio-type fields.
● toggleStates: Holds the boolean state of all switches and

default_value.
● showIcon: Tracks index of the default option selected.
● showOptions: Controls visibility of dropdowns.
● draggedIndex: Used for tracking drag-and-drop reordering.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

● embedObjectsLabels: Stores labels of selected embedded objects.

Functions and Their Purpose

Function Name Purpose

validateArray(arr) Utility function to check if an array is non-empty
and valid.

buildUpdatedSettings(updatedFields) Combines updated fields with current values and
toggle state to form the new field settings payload
for updateFieldSettings.

handleToggleChange(field, value) Handles toggle switch changes (like mandatory,
multiple, etc.), updates local state and parent field
settings.

updateDefaultValue(index, option) Updates default_value when a default dropdown
item is selected.

handleDrop(index) Handles drop action in drag-and-drop reordering of
options. Updates order in local state and triggers
updateFieldSettings.

handleDragStart(index) Stores the index of the dragged item. Used for
tracking during drag-and-drop.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

TypeScript

handleIconClick(index) Opens the dropdown menu to choose a new default
value for a dropdown item.

handleOptionSelect(labelArray) Called when multi-select dropdown changes.
Updates embedObjectsLabels and sends selected
UIDs to parent component via
updateFieldSettings

CardList
The CardList component is a React functional component designed to display
individual project cards within a list. Each card presents key information about a
project, such as its name, source CMS, status, and last modified date. Additionally,
it provides navigation functionality to the project's migration steps when you click
on it.

Location: src/components/Card
Click Handler:
It handles the click event when a project card is clicked and navigates to the
project migration steps page.
 Prop used: param id- The ID of the project.

const onClickProject = (id: string) => {
 if (isEmptyString(id)) return;

navigate(`/projects/${id}/migration/steps/${project?.current_step
}`);
 };

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

TypeScript

Status Mapping : Maps project status codes to corresponding icon names and
CSS class names for styling

const iconMapping: { [key: string]: string } = {
 '0': 'Information',
 '1': 'Warning',
 '2': 'Warning',
 '3': 'Warning',
 '4': 'Warning',
 '5': 'CheckCircleDark',
 '6': 'Close'
 };

 const statusClassMapping: { [key: string]: string } = {
 '0': 'draft',
 '1': 'pending',
 '2': 'pending',
 '3': 'pending',
 '4': 'pending',
 '5': 'completed',
 '6': 'failed'
 };

It renders below project information

● Project Name: Displayed with a tooltip for better UX.
● Source CMS: Shows the CMS associated with the project or a dash if

unavailable.
● Project Status:

○ Icon and text representation based on the project's status.
○ Styled using the appropriate CSS class from statusClassMapping.

● Last Modified Date:
○ Uses the getDays utility to display how long ago the project was

updated.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Content Mapper
The ContentMapper component is a core part of the migration flow,
responsible for mapping content types and fields from a legacy CMS to the
destination stack. It provides a UI for users to select, map, and manage
content types and fields and integrates closely with Redux for state
management.

Location: src/components/ContentMapper
Props:

● handleStepChange: Function to change the current step in the migration
flow.

● ref: Exposes imperative methods (e.g., save actions) to parent
components.

State & Context
● Redux State:

○ migrationData: General migration context and UI strings.
○ newMigrationData: Current migration progress and mappings.
○ selectedOrganization: The active organisation context.

● Local State:
○ tableData: Data for the mapping table (fields to be mapped).
○ loading, isLoading: Loading indicators for async actions.
○ itemStatusMap: Tracks the status of individual items (e.g.,

mapped/unmapped).
○ totalCounts: Number of items in the table.
○ fieldValue: Current field value being edited or mapped.
○ searchText, searchContentType: Search filters for content

types.
○ contentTypes, filteredContentTypes: Lists of available content

types.
○ otherCmsTitle, otherCmsUid: Identifiers for "other" CMS

content types.
○ isContentType: Flag for content type vs. global field mapping.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

○ contentModels: List of content models from Redux (cloned for

local use).
○ selectedContentType: Currently selected content type for

mapping.
○ existingField, deletedExstingField: Track existing and deleted

fields.
○ selectedOptions: Selected options in dropdowns or

multi-selects.
○ isDropDownChanged: Tracks if dropdown selection has

changed (for save prompts).
○ contentTypeMapped: The current mapping between legacy and

destination content types.
○ otherContentType: State for "other" content type selection.
○ active: Index of the currently active row or item.
○ rowIds, selectedEntries, initialRowSelectedData: Track selected

rows and entries.
○ contentTypeSchema: Schema details for the selected content

type.
○ showFilter: Toggles filter UI visibility.
○ count: General counter (e.g., for pagination or selection).
○ isModalOpen: Controls modal visibility (e.g., save changes).
○ nestedList: For nested field mapping scenarios.
○ isUpdated, isFieldDeleted, isContentDeleted,

isCsCTypeUpdated: Flags for various update/delete states.
○ isLoadingSaveButton: Loading indicator for save actions.

Functions :

1. fetchContentTypes
Fetches the list of content types for a given project.

● Sets loading state.
● Calls the API to get content types.
● Updates state with the fetched content types, sets the first as selected,

and fetches its fields.
2. handleSearch

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Handles searching/filtering of content types by a search string.

● Updates the search filter state.
● Fetches filtered content types from the API and updates the list.

3. fetchFields
Fetches field mappings for a specific content type.

● Initialises item status as "loading".
● Calls the API to get field mappings.
● Updates item status to "loaded" after fetching.
● Filters and sets valid table data for mapping.

4. fetchData
Fetches table data (field mappings) for the currently selected content type, using
a search filter if provided.

5. loadMoreItems
Implements "load more" functionality for paginated field mapping data.

● Sets the loading state for the specified range.
● Fetches additional field mappings and appends them to the table data.

6. handleOpenContentType
Handles switching between content types in the UI.

● If there are unsaved changes, it prompts the user to save before
switching.

● Otherwise, switches to the selected content type.

7. openContentType
Switches to a specific content type by index.

● Updates selection state and fetches its fields.

8. updateFieldSettings
Updates advanced settings for a specific field in the mapping table.

● Marks dropdown as changed if a checkbox is toggled.
● Updates the table data and selected entries with new settings.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

9. handleSchemaPreview
Opens a modal to preview the schema of a selected content type.

● Fetches schema data and displays it in a modal dialogue.

10. accessorCall
Renders field information for display in the mapping table, including type and UID.

11. getParentId
Finds the parent ID of a field by UID from the table data.

12. modifiedObj
Creates a simplified object representing a field, including parent ID if applicable.

13. getLastElements
Returns the last action performed on each row from a history object.

14. findLatest
Finds the most recent action performed across all rows.

15. updateRowHistoryObj
Updates the row history object when a row is selected or deselected.

16. handleSelectedEntries
Handles selection/deselection of rows in the mapping table.

● Updates row history and selection state.
● Handles group/child relationships for selection logic.

17. handleValueChange
Handles changes to dropdown values in the mapping table.

● Marks dropdown as changed.
● Updates table data and triggers a Redux state update.

18. handleDropDownChange
Handles changes to the selected destination content type in dropdowns.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

19. handleAdvancedSetting
Opens a modal for advanced field settings for a specific row.

20. SelectAccessor
Renders a select dropdown for mapping fields, with options based on field type
and schema.

21. handleFieldChange
Handles changes to mapped fields, including group/child logic and updating
selection arrays.

22. generateSourceGroupSchema
Generates a nested group structure from the source CMS schema for use in
mapping UI.

23. getMatchingOption
Utility function to create an option object for dropdowns, marking as disabled if
already selected.

24. checkConditions
Utility function to check if a destination field matches source field requirements
based on type.

25. processSchema
Recursively processes nested group structures in content type schemas to
generate mapping options.

26. SelectAccessorOfColumn
Renders select dropdowns for each column in the mapping table, handling
auto-mapping and advanced options.

27. handleSaveContentType
Saves the current content type mapping to the backend.

● Updates mapping state and notifies user on success or failure.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

TypeScript

28. handleDropdownState
Resets dropdown change state after saving or discarding changes.

29. handleResetContentType
Resets all mappings for the selected content type to their initial state.

● Updates backend and local state, clears selections, and notifies user.

30. handleCTDeleted
Purpose: Resets the mapping and state when a content type or global field is
deleted from the destination stack.

31. handleFetchContentType
Purpose: Fetches existing content types or global fields from the destination
stack, and updates the mapping state accordingly.

Destination Stack

DestinationStackComponent is a React functional component used in a
migration tool to manage and display step-by-step configurations for a
"Destination Stack." It asks user for stack selection and language mapping.

Location: src/components/DestinationStack

Props :

type DestinationStackComponentProps = {
 isCompleted: boolean;
 projectData: MigrationResponse;
 handleOnAllStepsComplete: (flag: boolean) => void;
};

State variables :

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

● isMigrationLocked (boolean)

 Determines whether the destination stack is editable or locked based on
project status (status === 2 || 5).

● stepperKey (string)
 Static key used to force re-render the AutoVerticalStepper. Defaults to
'destination-Vertical-stepper'.

● internalActiveStepIndex (number)
 Used to programmatically control which step is active in the stepper.
Currently set to -1.

● isLoading (boolean)
 Tracks whether the component is still loading CMS data. Prevents
rendering until data is ready.

● isProjectMapped (boolean)
 Tracks whether the current project has already been mapped to a
destination stack, disabling the stepper if so.

Component flow:

Initial Data Fetching:

● Loads data from a local CMS file via getCMSDataFromFile.
● Updates migration data and sets a lock based on projectData.status.
● Ends with setIsLoading(false)

Dynamic Step Control (placeholder for future):

● If internalActiveStepIndex is set, dynamically changes the step using
the ref.

● Currently not utilised (internalActiveStepIndex remains -1).

Project Mapping Status Sync:

● Watches newMigrationData.isprojectMapped and updates the internal
isProjectMapped state.

getDestinationStackSteps:

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

This function dynamically processes an array of step objects (allSteps) for the
Destination Stack Stepper, assigning UI components and statuses (active,
completed, locked) based on the migration state.

Parameters:

● isCompleted (boolean):
 Whether all steps are completed.

● isMigrationLocked (boolean):
 Whether the project is locked from further editing (based on migration
status).

● allSteps (IStep[]):
 Array of all step configuration objects coming from the CMS or default
data.

Returns: A new array of steps with updated components (data), status, and
lock state, ready for rendering inside the AutoVerticalStepper.

Load Organisation:

The LoadOrganization component is a read-only step UI in a multi-step
migration workflow. It is responsible for displaying the selected organisation for
the destination stack. This selection is either pulled from the existing migration
data (newMigrationData.destination_stack.selectedOrg) or defaults to
the globally selected organisation (selectedOrganisation from the
authentication store).

Location: src/components/DestinationStack/Actions/LoadOrganisation.tsx

LoadStacks

The LoadStacks component is a React functional component used in a migration
workflow that allows users to select or create a Contentstack "stack."

Location : src/components/DestinationStack/Actions/LoadStacks.tsx
Props:

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

TypeScript

interface LoadFileFormatProps {
 stepComponentProps?: () => {};
 currentStep: number;
 handleStepChange: (stepIndex: number, closeStep?: boolean) =>
void;
}

Functions used :

1. fetchData():
● Loads all stacks via getAllStacksInOrg.
● Maps stacks into IDropDown format.
● Sorts and updates the Redux store and local state (allStack,

selectedStack).
● Updates csLocale in destination_stack.

2. handleDropdownChange('stacks'): updates selectedStack and
dispatches to Redux.

3. handleCreateNewStack(): opens a modal with the AddStack form.
4. handleOnSave(): is triggered from AddStack. Calls createStacksInOrg()

and updates selectedStack

Language Mapper

This Mapper component is a React functional component designed to manage
language (locale) mappings between two systems (presumably Contentstack and
a source system) for a migration process.

Location : src/components/DestinationStack/Actions/LoadLanguageMapper.tsx

State variables:

● selectedMappings: Stores current locale mappings like {
"en-us-master_locale": "fr-fr" }.

● existingField / existingLocale: Track the currently selected locales on each
side.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

● selectedCsOptions / selectedSourceOption: Arrays tracking selected values

to prevent duplicates.
● csOptions / sourceoptions: Filtered dropdown options excluding

already-selected ones.
● placeholder: Static placeholder text for selects.

Functions used:

● handleSelectedCsLocale(...) : Handles destination CMS locale selection:
○ Updates existingField
○ Updates selected list
○ Updates selectedMappings with destination key

● handleSelectedSourceLocale(...) : Handles source system locale selection:

○ Updates existingLocale
○ Ensures label is synced
○ Updates selectedMappings using csLocaleKey
○

● handleLanguageDeletaion(...) : Triggered on removing a mapping:
○ Removes locale mapping from all states (existingField,

existingLocale, selectedMappings)
○ Also calls handleLangugeDelete (external prop function)

Table Header

The TableHeader component renders two FieldLabel components: one
labelled "Contentstack" and another labelled with the dynamic CMS prop.

Location : src/components/DestinationStack/Actions/tableHeader.tsx

Legacy CMS
The LegacyCMSComponent is a React component designed to facilitate the
integration and configuration of legacy CMS data within a migration workflow.

Location : src/components/LegacyCms
Props :

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

TypeScript

type LegacyCMSComponentProps = {
 legacyCMSData: LegacyCmsData;
 isCompleted: boolean;
 handleOnAllStepsComplete: (flag: boolean) => void;
};

State Variables

● isMigrationLocked: boolean
 Determines if the migration process is locked based on project status.

● isLoading: boolean
 Indicates if the component is in a loading state.

● internalActiveStepIndex: number
 Tracks the current active step in the stepper.

● stepperKey: string
 Unique key for the stepper component to manage its state.

● isAllStepsCompleted: boolean
 Flags whether all steps in the migration process are completed.

● isProjectMapped: boolean
 Indicates if the project has been mapped in the new migration data.

LoadSelectCms

This component is a React functional component used in a stepper workflow to
load and select a legacy CMS from a list based on configurations fetched from an
API.

Location : src/components/Steps/LoadSelectCms/LoadSelectCms.tsx

The LoadSelectCms component is responsible for

1. Fetching and displaying CMS options.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

TypeScript

2. Allowing the user to select one CMS.
3. Auto-selecting a CMS if only one match is found.
4. Updating the Redux state with the selected CMS.
5. Triggering step transition on selection.

Props :

interface LoadSelectCmsProps {
 stepComponentProps?: () => {};
 currentStep: number;
 handleStepChange: (stepIndex: number, closeStep?: boolean) =>
void;
}

Functions used :

1. handleCardClick(data: ICMSType)
Triggered when a CMS card is clicked.

● Updates selected card in local state.
● Dispatches updateNewMigrationData to Redux.
● Calls handleStepChange to move to the next step.

2. filterCMSData(searchText: string)
Handles filtering of CMS options.

● Retrieves all CMS from migrationData.legacyCMSData.
● Calls getConfig() to determine default cmsType.
● Filters CMS data using:

○ CMS parent match
○ Search text match (title or cms_id)

● If only one CMS remains, it's selected by default.
● Dispatches new migration data to Redux and triggers step change.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

TypeScript

This component returns error state if isError is true, shows loader if isLoading
is true.
Otherwise, renders CMS options as Card components. Cards are clickable unless
already selected or disabled by step.

LoadPreFix

The LoadPrefix component allows users to input a prefix (called "affix") during a
migration process. It validates the prefix according to specific business rules,
including restrictions against keywords and invalid characters. It also integrates
with Redux to store and manage the affix value.

Location : src/components/legacyCms/LoadPrefix.tsx

Props :

interface LoadSelectCmsProps {
 currentStep: number;
 handleStepChange: (stepIndex: number, closeStep?: boolean) =>
void;
}

Functions used:

1. fetchRestrictedKeywords: Fetches a list of restricted keywords from the
backend using an API and stores them in component state. It internally uses
getRestrictedKeywords() service and updates restrictedKeywords
state with an array of strings if the API call is successful.

2. handleOnChange: Handles user input changes in the affix TextInput,
applies validation, and updates the Redux store accordingly.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

TypeScript

LoadFileFormat

LoadFileFormat is a UI component that reads the uploaded file format and
displays it with an appropriate icon. It performs validation against allowed CMS
formats and triggers a step change in a migration wizard.

Location : src/components/LegacyCms/Actions/LoadFileFormat.tsx

Props :

interface LoadSelectCmsProps {
 currentStep: number;
 handleStepChange: (stepIndex: number, closeStep?: boolean) =>
void;
}

State variables used :

Variable Type Purpose

selectedCard ICardTy
pe

Stores the selected file format object from
Redux

isCheckedBoxChe
cked

boolean Stores checkbox status; defaults to true if
not defined

fileIcon string The name of the file format to be shown as
an icon

isError boolean Controls visibility of an error message

error string Stores the actual error message

Refs

Ref Purpose

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Unset

newMigrationDat
aRef

Stores a mutable reference to
newMigrationData

Functions used:

1. handleBtnClick

const handleBtnClick = async () ⇒ {
 if !isEmptyString(selectedCard?.fileformat_id) && isCheckedBoxChecked)
{
 dispatch(updateNewMigrationData({...}));
 props.handleStepChange(props?.currentStep);
 }
};

Purpose

● Validates that a file format is selected and checkbox is checked.
● Updates Redux store and advances to the next step.

Side Effects

● Dispatches updateNewMigrationData
● Calls handleStepChange

2. handleFileFormat

Purpose

● Determines the current file format from uploaded file data.
● Validates it against allowed formats for the selected CMS.
● Sets an error if invalid or updates the icon label otherwise.

Key Logic

● Uses filePath, selectedCms, and all_cms from Redux
● Checks allowed_file_formats against detected file extension

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

TypeScript

● If file is ZIP, formats it to Zip; otherwise uses uppercase label

Side Effects

● Updates fileIcon, isError, and error state

LoadUploadFile
The component manages the process of uploading a file, ensuring that the file is
properly validated before proceeding. It provides visual feedback to the user
about the status of the validation, such as progress percentages and validation
errors or success messages.

Location: src/components/LegacyCms/Actions/LoadUploadFile.tsx

Props :

interface LoadSelectCmsProps {
 currentStep: number;
 handleStepChange: (stepIndex: number, closeStep?: boolean) =>
void;
}

The user flow :

1. The user selects a file to upload.
2. The component validates the file type and format.
3. If valid, the file is uploaded with progress feedback displayed to the user.
4. State, progress, and validation status are stored in sessionStorage for

persistence.
5. The component interacts with Redux to update global state regarding the

file upload status.
6. Once the file is uploaded, messageis displayed to the user, and the process

continues.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Functions used:

1. getConfigDetails(): It calls the config API from the upload service and
extracts the file extension from the file path by calling the
getFileExtension().

2. handleOnFileUploadCompletion(): This function is called when the user
validates the file. It is integrated with the validation API from the upload
service. Upon validation, it stores the values in Redux and session storage
as well.

LogScreen

TestMigrationLogViewer is a React functional component that connects to a
WebSocket server to listen for real-time migration log updates. It displays these
logs with formatting based on log level (info, success, warning, error), handles
zoom and scroll controls, and updates the Redux store and localStorage based on
migration state.

Location: src/components/LogScreen
Props:

State Variable Type Purpose

isLogsLoading boolean Indicates if logs are being
received.

logs LogEntry[] Array of parsed log entries
displayed in the viewer.

migratedStack TestStacks Holds the current test stack
status.

zoomLevel number Controls the zoom level for log
display.

Functions used:

useEffect for Stack Info Update

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Updates migratedStack when test_migration changes in
newMigrationData.

useEffect for WebSocket Connection

● Initialises connection to the server using socket.io-client.
● Listens to the logUpdate event to receive logs.
● Parses and stores new log entries.
● Handles reconnection logic on disconnection.

handleScrollToTop and handleScrollToBottom

Scrolls the logs container to the top or bottom smoothly.

handleZoomIn and handleZoomOut

Controls the zoom level of the logs container within defined limits 0.6 to 1.4.

useEffect on logs

● Auto-scrolls to the bottom on new logs.
● Detects Test Migration Process Completed log to:

○ Mark test migration as completed.
○ Save state to localStorage.
○ Notify parent.
○ Update the Redux state.

useEffect on isLogsLoading and migratedStack

Resets logs if no logs are loading and the stack is not migrated.

MainHeader

The MainHeader component is a React functional component that serves as the
main header for a migrationstepper. It incorporates branding, organisation
selection, user profile access, and guarded navigation logic, all of which are
essential for the application's structure and usability.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Location : src/components/MainHeader

Functions used :

1. updateOrganisationListState()
● Maps through organisationsList
● Marks selected org as default
● Saves selected org to localStorage

2. fetchData()

● Loads CMS data for MainHeader
● Sets logo and other config

3. handleOnDropDownChange(data)

● If new selection differs from current, updates the selected org in
Redux and localStorage

4. handleonClick()
● Main click handler for logo
● Gets current project step from backend
● If conditions met, opens confirmation modal before navigation
● Otherwise, resets migration state and navigates to /projects

UI Structure

1. Logo (left-aligned)
○ Click opens modal or navigates to /projects
○ Tooltip: “Projectsˮ

2. Organization Switcher

○ Dropdown appears only on /projects

3. User Profile (right-aligned)
○ Appears on /projects or /projects/... paths
○ Uses ProfileCard inside dropdown

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

MigrationExecution

The MigrationExecution component is a crucial part of the migration workflow
in the application. It serves to:

● Display configured migration details such as Legacy CMS, Organization,
Stack, and Locale.

● Provide a visual representation of the migration process through execution
logs.

Location : src/components/MigrationExecution

Props:

handleStepChange

● Type: (currentStep: number) => void
● Description: A callback function to handle the change in the current step of

the migration process.

Helper function :

getPlaceHolder

● Parameters: title: string
● Returns: A string representing the placeholder value based on the provided

title.
● Logic :

○ Matches the title to corresponding fields in newMigrationData.
○ Returns the appropriate label or value for display.

Rendering Logic

● Loading State:
○ If isLoading is true or newMigrationData?.isprojectMapped is

true, displays a CircularLoader.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

TypeScript

● Main Content:

○ Displays a message indicating that the migration configurations are
set.

○ Iterates over MigrationInformation to display configured details:
■ Each item is displayed within a Field component.
■ Uses Tooltip to show the full value on hover.
■ Displays an ArrowRight icon between fields for visual flow.

○ Renders the MigrationLogViewer component to show execution
logs.

MigrationFlowHeader
The MigrationFlowHeader component serves as the header section for the
migration flow interface within the application. It displays the current project's
name and provides a call-to-action CTA button that allows users to proceed to
the next step in the migration process. The component dynamically adjusts the
CTA button's label and disabled state based on the current migration step and the
project's status.

Location : src/components/MigrationFlowHeader

Props:

type MigrationFlowHeaderProps = {
 handleOnClick: (event: MouseEvent, handleStepChange:
(currentStep: number) => void) => void;
 isLoading: boolean;
 isCompleted: boolean;
 legacyCMSRef: React.MutableRefObject<any>;
 projectData: MigrationResponse;
 finalExecutionStarted?: boolean;
};

Hooks and Selectors

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

TypeScript

● useNavigate: Provides navigation capabilities to programmatically change

routes.
● useParams: Accesses URL parameters, specifically projectId and stepId

in this context.
● useSelector: Retrieves data from the Redux store:

○ selectedOrganisation: The organization currently selected by the
user.

○ newMigrationData: Contains the latest migration data, including
statuses and configurations.

The component renders a header containing:

● Project Name: Displayed with a tooltip for full visibility, especially if the
name is truncated.

● CTA Button: Labeled appropriately based on the current step and disabled
based on the conditions outlined above.

ProfileCard:

The ProfileCard component displays the currently logged-in user's profile
information, including their initials, name, email, and region. It also provides a
logout button that clears local storage and redirects the user to the login page.

Location: src/components/ProfileHeader

Logout function :

const handleLogout = () => {

 if (clearLocalStorage()) { navigate('/', { replace: true });

 }};

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

TypeScript

● Clears local storage via clearLocalStorage().
● Redirects to the root path (/), usually the login page.

ProjectsHeader

The ProjectsHeader component provides a standardized header for the
"Projects" page. It includes :

● A title with an integrated search bar.
● A CTA Call To Action) button for creating new projects.
● Logic to conditionally disable the create button based on migration status.

Location : src/components/ProjectsHeader

Props :

export interface ProjectsHeaderType {
 cta?: CTA;
 restore_cta?: CTA;
 headingText: string | undefined;
 searchText: string;
 setSearchText: (value: string) => void;
 searchPlaceholder: string;
 handleModal?: () => void;
 allProject: ProjectsObj[] | null;
}

HorizontalStepper

The HorizontalStepper is a reusable, interactive component designed to guide
users through a multi-step process in a horizontal layout. This component
supports navigation control, step completion tracking, and modal-based
confirmation prompts. It's primarily used within a migration workflow UI.

Location : src/components/Stepper/HorizontalStepper

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

TypeScript

Props :

export type stepperProps = {
 steps: Array<stepsArray>;
 className?: string;
 emptyStateMsg?: string | JSX.Element;
 hideTabView?: boolean;

 stepContentClassName?: string;
 stepTitleClassName?: string;
 testId?: string;
 handleSaveCT?: () => void;
 changeDropdownState: () => void;
 projectData: MigrationResponse;
 isProjectMapped: boolean;
};

Functions used :

1. handleTabStep(idx): Validates and navigates to the selected step:
● If dropdown changes were made, prompts modal confirmation.
● Validates legacy CMS setup and stack selection.
● Displays warning notifications if required conditions are not met.
● Calls setTabStep(idx) if validation passes.

2. setTabStep(idx) : Navigates to a step only if:
● The step is either completed or is the next logical step.
● The project is not mapped.

3. StepsTitleCreator: Renders a horizontal visual stepper:
● Completed steps show a checkmark.
● Active step is highlighted.
● Future or invalid steps are disabled.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

TypeScript

SchemaModal
The SchemaModal component provides a modal-based UI to preview a nested
schema structure of a content type. It visualises fields using icons and supports
nested groups (like Contentstack's "group" or "modular blocks").

Location: src/components/SchemaModal
Interface: src/components/SchemaModal/schemaModal.interface.ts
Styles: src/components/SchemaModal/index.scss

Libraries and Dependencies

● React : React hooks for managing component state and lifecycle useState,
useEffect

● Venus Components: UI components ModalBody,ModalHeader,Icon.

Utility: getTopLevelIcons

Maps field types to corresponding Contentstack icons.

const getTopLevelIcons = (field: FieldMapType) => { ... }

● Purpose: Returns the corresponding icon name for a field type using the
Icons map.

● Handles different field types and variations, ensuring backward
compatibility and flexibility.

Component: TreeView

Parses and renders a nested, expandable tree of schema fields.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

TypeScript

TypeScript

const TreeView = ({ schema = [] }: schemaType) => { ... }

● Props: Accepts a schema array (field definitions).

● State: nestedList holds a structured version of the schema, with nested
fields grouped under parent fields (like groups).

● Effect: Transforms the flat schema list into a nested format for rendering.

Functions :

1. hasNestedValue(field): Checks if a field has child elements.

2. getChildFieldName(text, groupName): Removes group prefix from
child field names for cleaner display.

3. handleClick(event): Handles expand/collapse toggle logic and sets the
active class.

4. generateNestedOutline(item, index): Recursively renders child fields
under parent nodes.

Component: SchemaModal

A modal container for rendering the schema outline.

const SchemaModal = (props: SchemaProps) => { ... }

Props:

● contentType: Name of the content type being previewed.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

● schemaData: Raw field schema data to be displayed.

● closeModal: Function to close the modal.

Test Migration

The TestMigration component is a React functional component that facilitates
the testing phase of a CMS data migration project. It handles UI rendering, state
management, stack creation, migration initialization, and interaction with Redux
and backend APIs.

Render Logic:

● Displays a loader if the component is loading or project mapping is not
done.

● Otherwise:
○ Shows buttons and tooltips for creating a test stack.
○ Displays test stack information and a migration start button.
○ Renders logs via TestMigrationLogViewer component.

Location: src/components/TestMigration
Interface: src/components/TestMigration/testMigration.interface.ts
Styles: src/components/TestMigration/index.scss

Libraries and Dependencies

● React & React Router: Component hooks and routing.
● Venus Components: UI components like Tooltip, Button,

Notification,TextInput, FieldLabel, etc.
● Redux: State management using useSelector and useDispatch.
● Custom Services & Utilities: API services for CMS and stack handling,

constants, and utility functions.

Redux Usage

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

● useSelector: Accesses newMigrationData and

selectedOrganisation.
● useDispatch: Updates newMigrationData after stack creation or

migration.

Local Storage

● Key: testmigration_<projectId>
● Stores migration progress flags like isTestMigrationStarted and

isTestMigrationCompleted.

API Calls

● getCMSDataFromFile - Retrieves UI data.
● getOrgDetails - Fetches stack limits.
● getAllStacksInOrg - Gets existing stacks in the org.
● createTestStack - Creates a temporary stack for testing.
● createTestMigration - Starts the test migration process.

Error Handling

● API failures are logged to the console.
● Error messages shown via Notification.

Environment Variables

● REACT_APP_BASE_API_URL: Used as server path for the
TestMigrationLogViewer component.

State Variables

● data: Stores CMS static content for button labels and text.
● isLoading: Controls initial loading spinner
● isStackLoading: Controls loader for stack creation.
● disableTestMigration: Disables Test Migration button based on conditions.
● disableCreateStack: Disables test stack creation button.
● stackLimitReached: Flag indicating whether the stack limit has been

reached.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

● isProjectMapped: Controls when project mapping is in progress.

useEffect Hooks

1. Fetch CMS data: Loads static UI text content from a local CMS file.
2. Stack creation and migration logic: Determines when buttons should be

disabled based on the Redux state.
3. State from Local Storage: Retrieves and applies previous migration state

from session/local storage.

Functions :

5. handleCreateTestStack:
Checks current stack count and compares with organization limit.
Shows warning if limit is reached.
On success:

● Calls backend API to create a test stack.
● Updates Redux state with new stack data.
● Saves state in local storage.

6. handleTestMigration:
Triggers test migration by calling backend service.

On success:

● Updates Redux state.
● Saves migration progress to local storage.
● Send notification to the user.

7. formatErrorMessage:

Converts error object into a readable string with field-level errors.

8. handleMigrationState:
Updates button states in the parent based on the new migration state.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

API Integration :
It is used to organize reusable logic for communicating with external systems,
such as APIs, authentication providers, local storage, or other utilities that don't
belong in UI components.
Location : src/services

Following are the services used:

If you have any questions, please reach out to tso-migration@contentstack.com

File Name Responsibility

login.service.tsx Handles all user-related API calls (e.g., login, logout)

user.service.ts Handles all user-related API calls (e.g. getProfile)

project.service.tsx Handles CRUD operations for projects

stacks.service.tsx Handles CRUD operations for stacks

migration.service.tsx Migration-specific APIʼs

upload.service.tsx Handles config, validation related APIʼs

mailto:tso-migration@contentstack.com

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

	React UI Implementation Guide
	Starting Point
	Key Components
	Folder Structure
	Dependencies
	Detailed Component Overview:
	Entry point:
	App.tsx – Root Component Wrapper :
	AppRouter.tsx – Application Routing Configuration
	Home.tsx – Home Page Component
	Key Responsibilities

	Login Component:
	Project : project dashboard
	Migration component

	Components Directory Overview:
	AccountPage
	AdvancedProperties
	CardList
	Content Mapper
	Destination Stack
	Load Organisation:
	LoadStacks
	Language Mapper
	Table Header

	Legacy CMS
	LoadSelectCms
	LoadPreFix
	LoadFileFormat
	LoadUploadFile

	LogScreen
	MainHeader
	MigrationExecution
	MigrationFlowHeader
	ProfileCard:
	ProjectsHeader
	HorizontalStepper
	SchemaModal
	Test Migration

	API Integration :

